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Abstract: Knowing the faults early during software development helps software manager to optimally allocate resources
and achieve more reliable software within the time and cost constraints. A model is proposed in this paper to predict total
number of faults before testing using a fuzzy expert system. The proposed model predicts number of faults at the end of each
software development phase using reliability relevant software metrics and the level of developer’s Capability Maturity
Model (CMM) level. This paper illustrates how fuzzy expert system can predict the number of faults in the software and
thereafter reliability of the software. The proposed model has been applied to the various project data and the results show

that prediction results are quite realistic.
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1. INTRODUCTION

In the last four decades, human dependency on software in
their daily lives has increased so much that today it is
difficult to imagine living without devices controlled by
software. Software has become an integral part of most of
the application domains including medical applications,
power plants, air traffic control and railway signaling. The
development of these software applications is challenging,
because system engineers have to deal with alarge number
of quality requirements such as safety, security, availability,
reliability, maintainability and performance. The human
dependence on software givesrise to the possibility of crises
from its failure. The impact of these failures ranges from
malfunctioning of home appliances to economic damage to
loss of lives. Therefore, there is a growing need ensure the
reliability of software system. Moreover, it is well known
that earlier ardiability problem can be identified, the better
and more cost effectively this problem can be fixed.
Therefore, thereis a need to predict these reliability indices
early during software development.

| EEE defines software reliability as “the probability of
a software system or component to perform its intended
function under the specified operating conditions over the
specified period of time” [1]. In other words this can also
be defined as “the probability of failure-free software
operation for a specified period of time in a specified
environment”. Software reliability is generally accepted as
the key factor of software quality sinceit quantifies software
failures, which makes the system inoperative or risky [2].
A software failure is defined as “the departure of external
result of program operation from requirements’, whereas a
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fault is defined as “the defect in the program that, when
executed under particular conditions, causes a failure” [3].
To further elaborate, a software fault is a defective, missing,
or extra instruction or set of related instructions that is the
cause of one or more actual or potential failures. This can
be summarized to say that execution of a fault results in
failure of software.

Software reliability has roots in each step of the
requirements, design & coding process [4] and can be
improved by inspection and review of these steps. Also this
can be accurately assessed only after the testing or after the
product completion. Generally, software reliability can be
estimated or predicted using various available software
reliability models [3, 5] using failure data collected during
testing. This becomes too late and sometimes infeasible for
taking corrective actions. The solution to this problem isto
predict the software reliability early stage of development
processi.e. before testing. This early reliability information
can help in project management in reducing the development
cost by reducing the amount of the rework.

Sincethefailure dataisnot availablein the early phases
of software life cycle, we have to dependent on the
information such as reliability relevant software metrics,
developer’s maturity level, and expert opinions. To our
knowledge, these issues are not properly addressed in the
software reliability engineering literature. This paper
proposes a comprehensive framework to gather the
reliability relevant information from early phase of software
development life cycle, processing it, and integrating it with
the fuzzy logic system to predict the number of faults before
testing. Rest of the paper is organized in the following way.
Section 2 presentsliterature survey related with the problem.
Section 3 describes the proposed model. Section 4 provides
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aframework of fuzzy logic system for early fault prediction.
Section 5 contains the case studies and results whereas
conclusions are presented in Section 6.

2. RELATED WORKS

A lot of efforts have been made for software reliability
prediction and assessment using various models [3, 5].
Gaffney and Davis [6, 7] of the Software Productivity
Consortium devel oped the phase-based model. It makes use
of fault statistics obtained during the technical review of
requirements, design, and the coding to predict thereliability
during test and operation. One of the earliest and well known
efforts to predict software reliability in the earlier phase of
thelife cyclewasthework initiated by the Air Force'sRome
Laboratory [8]. For their model, they developed prediction
of fault density which they could then transform into other
reliability measures such as failure rates. To do this the
researchers selected a number of factors that they felt could
be related to fault density at the earlier phases. Agresti and
Evanco [9] have presented amodel to predict defect density
based on the product and process characteristics for Ada
program. There are many papers advocating statistical
models and software metrics [10, 11]. Most of them are
based on size and complexity metrics. In order to achieve
high software reliability the number of faults in delivered
code should be reduced. The faults are introduced in
softwarein each phase of softwarelife cycle and thesefaults
pass through subsequent phases of softwarelife cycleunless
they are detected through testing or review process. Finally,
undetected and uncorrected faults are delivered with
software. In order to achieve the target software reliability
efficiently and effectively, faults should beidentified at early
stages of software development process. During early phase
of software development testing/field failure data is not
available. Therefore, the prediction is carried out using
variousfactorsrelevant to reliability. A study was conducted
by Zhang and Pham [12] to find the factors affecting
software reliability. The study found 32 potential factors
involved in various stages of the software life cycle. In
another recent study conducted by Li and Smidt [13],
reliability relevant software engineering measures have been
identified. They have developed a set of ranking criteriaand
their levelsfor various reliability relevant software metrics,
present in the first four phases of software life cycle.
Recently, Kumar and Misra [14] made an effort for early
softwarereliability prediction considering the six top ranked
measures given by [13] and software operational profile.
Sometimes, it may happen that some of these top ranked
measures are not available, making the prediction result
unrealistic. Also they have considered only product metrics
and ignored process metrics that have a great impact on
software reliability [15].

The Capability Maturity Model (CMM) has become a
popular and widely accepted methodology to develop high
quality software within budget and time [16]. For example,
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as a software unit at Motorolaimproved from CMM level 2
to level 5, the average defect density reduced from 890
defects per million assembly-equivalent lines of code to
about 126 defects per million assembly-equivaent lines[17].
In an empirical study using 33 software products devel oped
over 12 years by an IT company, Harter et al. [18] found
that 1% improvement in process maturity resulted in 1.589%
increase in product quality. In another study, Krishnan and
Kellner [16] found process maturity and personnel capability
to be significant predictors (both at the 10% level) of the
number of defects. From the above literature we have
observed that

i) Software reliability is afunction of the number of
the remaining faults.

ii) Early fault prediction is more useful for both
software professionals and the developing
organization.

iii) Software metrics plays a vital role in early fault
prediction in the absence of failure data.

iv) Process maturity hasagreat impact on the software
reliability.

Review of literature indicates that traditional models
have not considered the both software metrics and
development process maturity, for the early fault prediction.
Therefore this paper proposes a model for early software
fault prediction considering software metrics and process
maturity together.

3. PROPOSED MODEL

Early faults prediction attracts both software professiona as
well as management as it provides an opportunity for the
early identification of software quality, cost overrun and
optimal development strategies. During the requirements,
design or coding phase predicting the number of faults can
lead to mitigating actions such as additional reviews and
more extensive testing [7]. The model considers two most
significant factors, software metrics and process maturity
together, for fault prediction. Themodel architectureisshown
in Figure 1. Software metrics can be classified in three
categories. product metrics, process metrics, and resources
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Figure 1: Early Fault Prediction Model
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metrics [19]. Product metrics describe characteristics of the
product such as size, complexity, design features,
performance and quality level etc. Process metrics can be
used to improve software development process and
maintenance. Resources metrics describe the project
characteristics and execution. Approximately thirty software
metrics exist, which can be associated with different phases
of software development life cycle. Among these metrics
some are significant predictor to reliability [13].

The CMM framework includes 18 key process areas
such as quality assurance, configuration management, defect
prevention, peer review, and training [15]. A software
processis assigned the highest maturity level if the practices
in al 18 key process areas of the CMM are adopted. The
CMM practices aid in reducing defect injection and in early
identification of defects. As a consequence, the number of
errors detected in testing and remaining in the delivered
software will become lesser [17].

The proposed model maintains a reliability relevant
metric list (RRML) from various avail abl e software metrics.
The model has considered three requirements metrics
(RM) i.e. Requirements Change Request (RCR), Review,
Inspection and Walk through (RIW), and Process Maturity
(PM) asinput to the requirements phase. Similarly at design
phase three design metrics (DM) i.e. design defect density
(DDD), fault days number (FDN), and data flow complexity
(DC) have considered as input. Two coding metrics (CM)
such as code defect density (CDD) and cyclomatic
complexity (CC) have been taken as input at coding phase.
The outputs of the model will be the number of faults at the
end of Requirements Phase (FRP), number of Faults at the
end of Design Phase (FDP), and number of Faults at the
end of Coding Phase (FCP).

4. IMPLEMENTATION

Themodel isimplemented in MATLAB utilizing fuzzy logic
toolbox. The basic steps of the model are identification of
reliability relevant input/output variables, development of
fuzzy profile of these input/output variables, defining
relationships between inputs and output variables and fault
prediction at the end of each phase of software life cycle
using fuzzy inference system (FIS). These basic steps can
be grouped into three broad phases as follows: (1) Early
information gathering phase, (2) Information processing
phase, and (3) Fault prediction phase.

4.1. Information Gathering Phase

The quality of the fuzzy approximation depends mainly on
the quality of information collected (subjective knowledge)
and expert opinion. Theinformation gathering phaseis often
considered the most vital step in developing a fuzzy logic
system. The development of fuzzy profiles for identified
input/output variables and fuzzy rules are assumed as
building blocks of the fuzzy inference system and includes
three steps as discussed below.

241

4.1.1. I dentify the Input and Output Variables

Appendix A, shows the list of reliability relevant metrics
with their fuzzy profile which can be considered at each
phase of software life cycle. These reliability relevant
metrics can beidentified using [13], [20]. We haveidentified
total eight input variables and three output variables for the
purpose of early fault prediction as shown in Table 1. Input
variables are the reliability relevant software metrics and
output variables are the number of faults at the end of each
phase. In order to justify the selection of these software
metrics in the proposed model, aregression analysis[21] is
performed for different metrics and corresponding
correlation coefficient has been identified. Besides this, we
have also considered other factors such as time, ease, and
cost in finding these software metrics.

Table 1
Model Input/Output Variables
Phase Input Output No. of
Variables Variables Rules
Requirement RCR, RIW,PM  FRP (3)"3=27
Design FRP, DDD, FDP 5" * (33 =135
FDN, DC
Coding FRP, FDP, FCP (5)°2 * (3)"2 = 225
CDD, CC

4.1.2. Develop Fuzzy Profile of Identified Variables

Thisisthefirst step in incorporating human knowledge into
engineering systems in a systematic and efficient manner.
The data, which may be useful for selecting appropriate
linguistic variable, is generally available in one or more
forms such as expert’s opinion, software requirements,
user’s expectations, record of existing field data from
previous release or similar system, etc. [22].

Input/output variables gathered at the previous steps
are fuzzy in nature and is characterized by membership
function. We have considered either triangular or trapezoidal
membership function [23], [24], for each variable. Fuzzy
membership functions are generated utilizing the linguistic
categories such as Very Low (VL), Low (L), Moderate (M),
High (H) and Very High (VH), identified by a human
expert to express hig’her assessment. Figure 2-12, shows
membership function and fuzzy profiles of al the selected
input/output variables for visualization purpose.

Low Medium High

Membership
function p

0

0 25 35 55 60 75 80 100 RCR

Figure 2: Fuzzy Profile of RCR
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4.1.3. Develop Fuzzy Rule Base

The most important part of the early reliability prediction
system is the rules, and how they interact with each other
in order to generate results. The rules come from the experts
so that the expert system can emulate the inference of an
actual expert. To develop fuzzy rule base, we can acquire
knowledge from different sources such as domain experts,
historical data analysis of similar or earlier system, and
engineering knowledge from existing literature’s[25], [12].
In our experiments, we generated some rules from the
software engineering point of view, and all of them take the
form of ‘If A then B’. Table 2, 3 & 4, shows the fuzzy if-
then rules required for each phase of software life cycle.

Table 2
Fuzzy Rules at Requirements Phase
Rule RCR RIW PM FRP
1 L L L VL
2 L L M L
3 L L H M
25 H H L M
26 H H M VH
27 H H H VH
Table 3
Fuzzy Rules at Design Phase
Rule FRP DDD FDN DC FDP
1 VL L L L VL
2 VL L L M L
3 VL L L H M
133 V H H H H H
134 VH H H H VH
135 VH H H H VH
Table 4
Fuzzy Rules at Coding Phase
Rule FRP FDP CcC CDD FCP
1 VL VL L L VL
2 VL VL L M VL
3 VL VL L H L
223 VH VH H L H
224 VH VH H M VH
225 VH VH H H VH

4.2. Information Processing Phase

In this phase, the fuzzy system maps all inputs on to an
output. This process of mapping inputs on to output isknown
as fuzzy inference process or fuzzy reasoning [26], [24].
Basis for this mapping is the number of fuzzy IF-THEN
rules, each of which describes the local behavior of the
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mapping. The Mamdani fuzzy inference system [27] is
considered here for al the information processing.

4.2.1. Defuzzfication

Defuzzification isthe process of deriving acrisp value from
a fuzzy set using any defuzzification methods such as
Centroid, Bisector, Middle of maximum, Largest of
maximum, and Smallest of maximum [23]. The most
commonly used method is the Centroid method, which
returns the center of area under the curve, is used in here
for defuzzification.

4.3. Fault Prediction Phase

Stages present in the proposed structure are shown in Figure
1. The model resemble waterfall model [28]. It divides the
structure into three consecutive phase I, 11, and Il i.e.
requirement phase, design phase, and coding phase
respectively. Phase-l predicts the number of faults at the
end of requirement phase using requirement metrics such
as RCR, RIW, and PM. Phase-ll predicts the number of
faults at the end of design phase using design metrics such
as DDD, FDN, and DC. Since most of the software faults
traced back to requirementserror, FRPis considered asinput
metric to this phase. Similarly at phase-111 besidesthe coding
metrics CC and CDD, FRP and FDP are also considered as
input to predict the number of faults at the end of design
phase. The Mamdani fuzzy inference system [27] is
considered here for fault prediction at each phase.

5. RESULTS

In the proposed model, in order to analyze the impact of
individual phase of software life cycle on the prediction of
software faults, the values of the metrics from three different
software projects are considered.

The number of faults at end of each phase is shown in
the Table 5, 6 & 7. Result of the best case and worst case
input metrics applied to the proposed model state that the
proposed model could be useful to predict the softwarefaults
that may range from 0 to 85. The number of fault at the end
of requirement phaseis 70 in worst case, 10 in average case

Table 5
Faults Prediction at Requirements Phase
RCR RIW PM FRP
Worst Case 100 0 0 70
Avg. Case 50 25 25 10
Best Case 0 5 5 1.33
Table 6
Faults Prediction at Design Phase
DDD FDN DC FDP
Worst Case 5 50 500 79.8
Avg. Case 25 25 250 45
Best Case 0 0 0 3
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Table 7
Faults Prediction at Coding Phase
CDD CcC FCP
Worst Case 1 500 84.7
Avg. Case 0.5 250 56.7
Best Case 0 0 5.67

and 1.33 in the best case. The number of fault at the end of
design phase is 79.8 in worst case, 45 in average case, and
3inthe best case. Finally the number of fault at the end of
coding phase is 84.7 in worst case, 56.7 in average case,
and 5.67 in the best case.

6. CONCLUSIONS

A model for the early prediction of softwarefault is presented
in this paper. The model is based on reliability relevant
software metrics and developing organization’s CMM level.
Total 8 reliability relevant metrics has identified and using
fuzzy inference system, total number of faults at the end of
each phase of software life cycle is predicted. For software
professionals, this model provides an insight towards
software metrics and its impact on software fault during the
development process. For software project mangers, the
model provides a methodology for allocating the resources
for developing reliable and cost-effective software.
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Appendix A. Fuzzy Profiles of Reliability Relevant Metrics at Requirements, Design and Coding Phase

#  Metrics Rank  Fuzzy Range Low Moderate High

1. Code defect density 0.83 [0-1] (0;0;0.2;0.4) (0.2;0.4;0.5;0.7) (0.5,0.7;1;1)

2. Design defect density 0.75 [0-1] (0;0;0.2;,0.4) (0.2,0.4;0.5;0.7) (0.5,0.7;1;2)

3. Cyclomatic complexity 0.74 [0-500] (0;0;100;150)  (100;150;250;300)  (250;350;500;500)
4. Fault density 0.73 [0-5] (0,0;1;2) (1,2,2.5;3.5) (2.5;3.5;5;5)

5. Fault-days number 0.71 [0-50] (0;0;2;5) (1;4;8;15) (8;20;50;50)

6. Requirement change requests 0.69 [0-100] (0;0;25;35) (25;35;55;75) (60;80;100;100)
7. Error Distribution 0.65 [0-10] (0;0;3;4.5) (3;4.5;5.5;6.5) (5.5;8;10;10)

8. Minimal unit test case determination 0.64 [0-10] (0;0;2;4) (3;5;6) (5;8;10;10)

9. Reviews, inspection and walkthroughs 0.61 [0-5] (0,0;1;2) (1,2;,2.5;3.5) (3:4,5;5)

10. Man hours per major defect detected 0.61 [0-5] (0,0;1;2) (1,1,2;3) (2;3;5;5)

11. Software capability maturity level 0.60 [0-5] (0;0;0.5;1) (3;1.5;2.5;3) (3;4;5;5)

12. Dataflow complexity 0.59 [0-500] (0;0;50;100) (80;120;200;250) (200;300;500;500)
13. Requirement traceability 0.56 [0-1] (0;0;0.2;0.4) (0.2;0.4;0.5;0.7) (0.5,0.7;1;1)

14. Function point analysis 0.55 [0-100] (0;0;5;10) (5;10;20;30) (25;50;100;100)
15. System design complexity 0.53 [0-10] (0,0;2;9) (3;4;5;6) (5;8;10;10)

16. Requirement compliance 0.50 [0-100] (0;0;1;5) (3;5;10;20) (20;40;100;100)
17. Feature point analysis 0.50 [0-100] (0;0;10) (10;20;30) (25;50;100;100)
18. No. of faults remaining (error seeding) 0.47 [0-100] (0;0;5) (5;10;15;25) (20;40;100;100)
19. Graph-theoretic static architecture complexity  0.46 [0-10] (0,0;2;9) (3;4;5;6) (5;8;10;10)

20. Bugs per line of code 0.46 [0-5] (0,0;1;2) (1,1,2;3) (2;3;5;5)

21. Cause & effect graphing 0.40 [0-1] (0;0;0.2;0.4) (0.2;0.4;0.5;0.7) (0.5;0.7;1;1)
22. Cohesions 0.36 [0-1] (0;0;0.2,0.4) (0.2,0.4,0.5;0.7) (0.5;0.7;1;1)
23. Completeness 0.36 [0-1] (0;0;0.2;0.4) (0.2,0.4;0.5;0.7) (0.5,0.7;1;2)




